title

Wetting behavior and reactivity of molten silicon with h-BN substrate at ultrahigh temperatures up to 1750° C

author

Wojciech Polkowski, Natalia Sobczak, Rafał Nowak, Artur Kudyba, Grzegorz Bruzda, Adelajda Polkowska, Marta Homa, Patrycja Turalska, Merete Tangstad, Jafar Safarian, Elmira Moosavi-Khoonsari, Alejandro Datas

publisher

Journal of Materials Engineering and Performance

type

Article

DOi

https://doi.org/10.1007/s11665-017-3114-8

date of publication

2017-12-28

abstract 

For a successful implementation of newly proposed silicon-based latent heat thermal energy storage systems, proper ceramic materials that could withstand a contact heating with molten silicon at temperatures much higher than its melting point need to be developed. In this regard, a non-wetting behavior and low reactivity are the main criteria determining the applicability of ceramic as a potential crucible material for long-term ultrahigh temperature contact with molten silicon. In this work, the wetting of hexagonal boron nitride (h-BN) by molten silicon was examined for the first time at temperatures up to 1750 °C. For this purpose, the sessile drop technique combined with contact heating procedure under static argon was used. The reactivity in Si/h-BN system under proposed conditions was evaluated by SEM/EDS examinations of the solidified couple. It was demonstrated that increase in temperature improves wetting, and consequently, non-wetting-to-wetting transition takes place at around 1650 °C. The contact angle of 90° ± 5° is maintained at temperatures up to 1750 °C. The results of structural characterization supported by a thermodynamic modeling indicate that the wetting behavior of the Si/h-BN couple during heating to and cooling from ultrahigh temperature of 1750 °C is mainly controlled by the substrate dissolution/reprecipitation mechanism.

 full article